Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 477, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216572

RESUMO

Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.


Assuntos
Neurilemoma , Neurofibromatoses , Neurofibromatose 1 , Neurofibromatose 2 , Animais , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neurilemoma/genética , Neurilemoma/patologia , Neurofibromatoses/metabolismo , Neurofibromatoses/patologia , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Neurofibromatose 2/genética , Neurofibromatose 2/patologia , Células de Schwann/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
2.
Nat Commun ; 14(1): 5266, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644028

RESUMO

Pupylation, a post-translational modification found in Mycobacterium tuberculosis and other Actinobacteria, involves the covalent attachment of prokaryotic ubiquitin-like protein (Pup) to lysines on target proteins by the ligase PafA (proteasome accessory factor A). Pupylated proteins, like ubiquitinated proteins in eukaryotes, are recruited for proteasomal degradation. Proteomic studies suggest that hundreds of potential pupylation targets are modified by the sole existing ligase PafA. This raises intriguing questions regarding the selectivity of this enzyme towards a diverse range of substrates. Here, we show that the availability of surface lysines alone is not sufficient for interaction between PafA and target proteins. By identifying the interacting residues at the pupylation site, we demonstrate that PafA recognizes authentic substrates via a structural recognition motif centered around exposed lysines. Through a combination of computational analysis, examination of available structures and pupylated proteomes, and biochemical experiments, we elucidate the mechanism by which PafA achieves recognition of a wide array of substrates while retaining selective protein turnover.


Assuntos
Ligases , Ubiquitinas , Proteômica , Eletricidade Estática , Células Procarióticas , Lisina
3.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292835

RESUMO

Mixed phenotype acute leukemia (MPAL) is a leukemia whose biologic drivers are poorly understood, therapeutic strategy remains unclear, and prognosis is poor. We performed multiomic single cell (SC) profiling of 14 newly diagnosed adult MPAL patients to characterize the immunophenotypic, genetic, and transcriptional landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. However, progressive acquisition of mutations is associated with increased expression of immunophenotypic markers of immaturity. Using SC transcriptional profiling, we find that MPAL blasts express a stem cell-like transcriptional profile distinct from other acute leukemias and indicative of high differentiation potential. Further, patients with the highest differentiation potential demonstrated inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in this cohort, is applicable to bulk RNA sequencing data and was predictive of survival in an independent patient cohort, suggesting utility for clinical risk stratification.

4.
Nat Biotechnol ; 41(11): 1557-1566, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36879006

RESUMO

Current single-cell RNA-sequencing approaches have limitations that stem from the microfluidic devices or fluid handling steps required for sample processing. We develop a method that does not require specialized microfluidic devices, expertise or hardware. Our approach is based on particle-templated emulsification, which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions with only a vortexer. Particle-templated instant partition sequencing (PIP-seq) accommodates a wide range of emulsification formats, including microwell plates and large-volume conical tubes, enabling thousands of samples or millions of cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity transcriptomes in mouse-human mixing studies, is compatible with multiomics measurements and can accurately characterize cell types in human breast tissue compared to a commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute leukemia using PIP-seq reveals the emergence of heterogeneity within chemotherapy-resistant cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible and scalable next-generation workflow that extends single-cell sequencing to new applications.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Microfluídica , Humanos , Animais , Camundongos , Microfluídica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Célula Única/métodos , Genômica/métodos , Transcriptoma/genética
5.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074872

RESUMO

Cell-cell interactions are important to numerous biological systems, including tissue microenvironments, the immune system, and cancer. However, current methods for studying cell combinations and interactions are limited in scalability, allowing just hundreds to thousands of multicell assays per experiment; this limited throughput makes it difficult to characterize interactions at biologically relevant scales. Here, we describe a paradigm in cell interaction profiling that allows accurate grouping of cells and characterization of their interactions for tens to hundreds of thousands of combinations. Our approach leverages high-throughput droplet microfluidics to construct multicellular combinations in a deterministic process that allows inclusion of programmed reagent mixtures and beads. The combination droplets are compatible with common manipulation and measurement techniques, including imaging, barcode-based genomics, and sorting. We demonstrate the approach by using it to enrich for chimeric antigen receptor (CAR)-T cells that activate upon incubation with target cells, a bottleneck in the therapeutic T cell engineering pipeline. The speed and control of our approach should enable valuable cell interaction studies.


Assuntos
Bioensaio/métodos , Comunicação Celular/fisiologia , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Animais , Comunicação Celular/genética , Genômica/métodos , Humanos
6.
Sci Rep ; 11(1): 10857, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035349

RESUMO

Barcode beads allow efficient nucleic acid tagging in single cell genomics. Current barcode designs, however, are fabricated with a particular application in mind. Repurposing to novel targets, or altering to add additional targets as information is obtained is possible but the result is suboptimal. Here, we describe a modular framework that simplifies generation of multifunctional beads and allows their easy extension to new targets.


Assuntos
Genômica/métodos , Microfluídica/métodos , Análise de Célula Única/métodos , Biomarcadores Tumorais , Código de Barras de DNA Taxonômico , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/etiologia , Transcriptoma
7.
Nat Commun ; 12(1): 1583, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707421

RESUMO

Studies of acute myeloid leukemia rely on DNA sequencing and immunophenotyping by flow cytometry as primary tools for disease characterization. However, leukemia tumor heterogeneity complicates integration of DNA variants and immunophenotypes from separate measurements. Here we introduce DAb-seq, a technology for simultaneous capture of DNA genotype and cell surface phenotype from single cells at high throughput, enabling direct profiling of proteogenomic states in tens of thousands of cells. To demonstrate the approach, we analyze the disease of three patients with leukemia over multiple treatment timepoints and disease recurrences. We observe complex genotype-phenotype dynamics that illustrate the subtlety of the disease process and the degree of incongruity between blast cell genotype and phenotype in different clinical scenarios. Our results highlight the importance of combined single-cell DNA and protein measurements to fully characterize the heterogeneity of leukemia.


Assuntos
DNA/genética , Estudos de Associação Genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Análise de Célula Única/métodos , Sequência de Bases , Linhagem Celular Tumoral , Técnicas de Genotipagem , Humanos , Imunofenotipagem , Células Jurkat , Análise de Sequência de DNA , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores
8.
Anal Chem ; 92(21): 14616-14623, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33049138

RESUMO

Analyzing every cell in a diverse sample provides insight into population-level heterogeneity, but abundant cell types dominate the analysis and rarer populations are scarcely represented in the data. To focus on specific cell types, the current paradigm is to physically isolate subsets of interest prior to analysis; however, it remains difficult to isolate and then single-cell sequence such populations because of compounding losses. Here, we describe an alternative approach that selectively merges cells with reagents to achieve enzymatic reactions without having to physically isolate cells. We apply this technique to perform single-cell transcriptome and genome sequencing of specific cell subsets. Our method for analyzing heterogeneous populations obviates the need for pre- or post-enrichment and simplifies single-cell workflows, making it useful for other applications in single-cell biology, combinatorial chemical synthesis, and drug screening.


Assuntos
Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Linhagem Celular Tumoral , Fluorescência , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
9.
Nature ; 587(7834): 477-482, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33116311

RESUMO

Myeloid malignancies, including acute myeloid leukaemia (AML), arise from the expansion of haematopoietic stem and progenitor cells that acquire somatic mutations. Bulk molecular profiling has suggested that mutations are acquired in a stepwise fashion: mutant genes with high variant allele frequencies appear early in leukaemogenesis, and mutations with lower variant allele frequencies are thought to be acquired later1-3. Although bulk sequencing can provide information about leukaemia biology and prognosis, it cannot distinguish which mutations occur in the same clone(s), accurately measure clonal complexity, or definitively elucidate the order of mutations. To delineate the clonal framework of myeloid malignancies, we performed single-cell mutational profiling on 146 samples from 123 patients. Here we show that AML is dominated by a small number of clones, which frequently harbour co-occurring mutations in epigenetic regulators. Conversely, mutations in signalling genes often occur more than once in distinct subclones, consistent with increasing clonal diversity. We mapped clonal trajectories for each sample and uncovered combinations of mutations that synergized to promote clonal expansion and dominance. Finally, we combined protein expression with mutational analysis to map somatic genotype and clonal architecture with immunophenotype. Our findings provide insights into the pathogenesis of myeloid transformation and how clonal complexity evolves with disease progression.


Assuntos
Células Clonais/patologia , Análise Mutacional de DNA , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/patologia , Análise de Célula Única , Separação Celular , Células Clonais/metabolismo , Humanos , Imunofenotipagem
10.
Lab Chip ; 20(14): 2465-2472, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32531004

RESUMO

Current encapsulation approaches control the number of particles encapsulated per droplet, but not the particle types; consequently, they are unable to generate droplets containing combinations of distinct particle types, limiting the reactions that can be performed. We describe a microfluidic particle zipper that allows the number and types of particles encapsulated in every droplet to be controlled. The approach exploits self-ordering to generate repeating particle patterns that allow controlled encapsulation in droplets. We use the method to combine barcode particles with gel encapsulated cells to profile multiple disease relevant genomic loci with single cell sequencing. Particle zippers can operate in series to generate complex particle compositions in droplets.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica
11.
Sci Rep ; 8(1): 2919, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29440771

RESUMO

The transcriptome and proteome encode distinct information that is important for characterizing heterogeneous biological systems. We demonstrate a method to simultaneously characterize the transcriptomes and proteomes of single cells at high throughput using aptamer probes and droplet-based single cell sequencing. With our method, we differentiate distinct cell types based on aptamer surface binding and gene expression patterns. Aptamers provide advantages over antibodies for single cell protein characterization, including rapid, in vitro, and high-purity generation via SELEX, and the ability to amplify and detect them with PCR and sequencing.


Assuntos
Perfilação da Expressão Gênica , Técnica de Seleção de Aptâmeros , Análise de Célula Única , Células 3T3 , Animais , Camundongos
12.
J Mol Biol ; 429(22): 3486-3499, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28478282

RESUMO

Prokaryotic ubiquitin-like protein (Pup) and the modification enzymes involved in attaching Pup to or removing it from target proteins present a fascinating example of convergent evolution with respect to eukaryotic ubiquitination. Like ubiquitin (Ub), Pup is a small protein that can be covalently attached to lysine side chains of cellular proteins, and like Ub, it can serve to recruit tagged proteins for proteasomal degradation. However, unlike Ub, Pup is conformationally highly dynamic, exhibits a different linkage connectivity to its target lysines, and its ligase belongs to a different class of enzymes than the E1/E2/E3 cascade of ubiquitination. A specific feature of actinobacteria (aside from sporadic cases in a few other lineages), pupylation appears to have evolved to provide an advantage to the bacteria under certain environmental stresses rather than act as a constitutive modification. For Mycobacterium tuberculosis, pupylation and the recruitment of pupylated substrates to the proteasome support persistence inside host macrophages during pathogenesis, rendering the Pup-proteasome system an attractive drug target. In this review, we consider the dynamic nature of Pup in relation to its function, discuss the reaction mechanisms of ligation to substrates and cleavage from pupylated substrates, and put them in context of the evolutionary history of this post-translational modification.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/metabolismo , Enzimas Desubiquitinantes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
13.
BMC Struct Biol ; 17(1): 1, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28143508

RESUMO

BACKGROUND: The post-translational modification pathway referred to as pupylation marks proteins for proteasomal degradation in Mycobacterium tuberculosis and other actinobacteria by covalently attaching the small protein Pup (prokaryotic ubiquitin-like protein) to target lysine residues. In contrast to the functionally analogous eukaryotic ubiquitin, Pup is intrinsically disordered in its free form. Its unfolded state allows Pup to adopt different structures upon interaction with different binding partners like the Pup ligase PafA and the proteasomal ATPase Mpa. While the disordered behavior of free Pup has been well characterized, it remained unknown whether Pup adopts a distinct structure when attached to a substrate. RESULTS: Using a combination of NMR experiments and biochemical analysis we demonstrate that Pup remains unstructured when ligated to two well-established pupylation substrates targeted for proteasomal degradation in Mycobacterium tuberculosis, malonyl transacylase (FabD) and ketopantoyl hydroxylmethyltransferase (PanB). Isotopically labeled Pup was linked to FabD and PanB by in vitro pupylation to generate homogeneously pupylated substrates suitable for NMR analysis. The single target lysine of PanB was identified by a combination of mass spectroscopy and mutational analysis. Chemical shift comparison between Pup in its free form and ligated to substrate reveals intrinsic disorder of Pup in the conjugate. CONCLUSION: When linked to the proteasomal substrates FabD and PanB, Pup is unstructured and retains the ability to interact with its different binding partners. This suggests that it is not the conformation of Pup attached to these two substrates which determines their delivery to the proteasome, but the availability of the degradation complex and the depupylase.


Assuntos
Proteína de Transporte de Acila S-Maloniltransferase/química , Proteínas de Bactérias/química , Hidroximetil e Formil Transferases/química , Mycobacterium tuberculosis/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinas/química , Proteína de Transporte de Acila S-Maloniltransferase/metabolismo , Proteínas de Bactérias/metabolismo , Hidroximetil e Formil Transferases/metabolismo , Modelos Moleculares , Conformação Proteica , Proteólise , Especificidade por Substrato , Ubiquitinação , Ubiquitinas/metabolismo
14.
Structure ; 24(12): 2138-2151, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27839949

RESUMO

Mycobacterium tuberculosis harbors proteasomes that recruit substrates for degradation through an ubiquitin-like modification pathway. Recently, a non-ATPase activator termed Bpa (bacterial proteasome activator) was shown to support an alternate proteasomal degradation pathway. Here, we present the cryo-electron microscopy (cryo-EM) structure of Bpa in complex with the 20S core particle (CP). For docking into the cryo-EM density, we solved the X-ray structure of Bpa, showing that it forms tight four-helix bundles arranged into a 12-membered ring with a 40 Å wide central pore and the C-terminal helix of each protomer protruding from the ring. The Bpa model was fitted into the cryo-EM map of the Bpa-CP complex, revealing its architecture and striking symmetry mismatch. The Bpa-CP interface was resolved to 3.5 Å, showing the interactions between the C-terminal GQYL motif of Bpa and the proteasome α-rings. This docking mode is related to the one observed for eukaryotic activators with features specific to the bacterial complex.


Assuntos
Mycobacterium tuberculosis/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/química , Estrutura Secundária de Proteína
15.
PLoS One ; 9(12): e114348, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25469515

RESUMO

The occurrence of the proteasome in bacteria is limited to the phylum of actinobacteria, where it is maintained in parallel to the usual bacterial compartmentalizing proteases. The role it plays in these organisms is still not fully understood, but in the human pathogen Mycobacterium tuberculosis (Mtb) the proteasome supports persistence in the host. In complex with the ring-shaped ATPase Mpa (called ARC in other actinobacteria), the proteasome can degrade proteins that have been post-translationally modified with the prokaryotic ubiquitin-like protein Pup. Unlike for the eukaryotic proteasome core particle, no other bacterial proteasome interactors have been identified to date. Here we describe and characterize a novel bacterial proteasome activator of Mycobacterium tuberculosis we termed Bpa (Rv3780), using a combination of biochemical and biophysical methods. Bpa features a canonical C-terminal proteasome interaction motif referred to as the HbYX motif, and its orthologs are only found in those actinobacteria encoding the proteasomal subunits. Bpa can inhibit degradation of Pup-tagged substrates in vitro by competing with Mpa for association with the proteasome. Using negative-stain electron microscopy, we show that Bpa forms a ring-shaped homooligomer that can bind coaxially to the face of the proteasome cylinder. Interestingly, Bpa can stimulate the proteasomal degradation of the model substrate ß-casein, which suggests it could play a role in the removal of non-native or damaged proteins.


Assuntos
Proteínas de Bactérias/química , Mycobacterium tuberculosis/enzimologia , Complexo de Endopeptidases do Proteassoma/química , Sequência de Aminoácidos , Sequência Conservada , Ativação Enzimática , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas
16.
J Am Chem Soc ; 135(18): 6794-7, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23601177

RESUMO

Prokaryotic ubiquitin-like protein (Pup) is covalently attached to target proteins by the ligase PafA, tagging substrates for proteasomal degradation. The crystal structure of Pup in complex with PafA, reported here, reveals that a long groove wrapping around the enzyme serves as a docking site for Pup. Upon binding, the C-terminal region of the intrinsically disordered Pup becomes ordered to form two helices connected by a linker, positioning the C-terminal glutamate in the active site of PafA.


Assuntos
Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Corynebacterium glutamicum/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
17.
BMC Biol ; 10: 95, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23198822

RESUMO

Pupylation is a post-translational protein modification occurring in actinobacteria through which the small, intrinsically disordered protein Pup (prokaryotic ubiquitin-like protein) is conjugated to lysine residues of proteins, marking them for proteasomal degradation. Although functionally related to ubiquitination, pupylation is carried out by different enzymes that are evolutionarily linked to bacterial carboxylate-amine ligases. Here, we compare the mechanism of Pup-conjugation to target proteins with ubiquitination, describe the evolutionary emergence of pupylation and discuss the importance of this pathway for survival of Mycobacterium tuberculosis in the host.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Mycobacterium tuberculosis/metabolismo , Ubiquitinas/metabolismo , Proteínas de Bactérias/genética , Evolução Biológica , Modelos Moleculares , Conformação Proteica , Ubiquitinas/genética
18.
J Biol Chem ; 287(11): 7907-14, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22210775

RESUMO

Pupylation is a bacterial post-translational modification of target proteins on lysine residues with prokaryotic ubiquitin-like protein Pup. Pup-tagged substrates are recognized by a proteasome-interacting ATPase termed Mpa in Mycobacterium tuberculosis. Mpa unfolds pupylated substrates and threads them into the proteasome core particle for degradation. Interestingly, Mpa itself is also a pupylation target. Here, we show that the Pup ligase PafA predominantly produces monopupylated Mpa modified homogeneously on a single lysine residue within its C-terminal region. We demonstrate that this modification renders Mpa functionally inactive. Pupylated Mpa can no longer support Pup-mediated proteasomal degradation due to its inability to associate with the proteasome core. Mpa is further inactivated by rapid Pup- and ATPase-driven deoligomerization of the hexameric Mpa ring. We show that pupylation of Mpa is chemically and functionally reversible. Mpa regains its enzymatic activity upon depupylation by the depupylase Dop, affording a rapid and reversible activity control over Mpa function.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Mycobacterium tuberculosis/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Ubiquitinas/metabolismo , Adenosina Trifosfatases/genética , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Mycobacterium tuberculosis/genética , Complexo de Endopeptidases do Proteassoma/genética , Dobramento de Proteína , Ubiquitinas/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...